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Random graph models for directed acyclic networks
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We study random graph models for directed acyclic graphs, a class of networks that includes citation
networks, food webs, and feed-forward neural networks among others. We propose two specific models
roughly analogous to the fixed edge number and fixed edge probability variants of traditional undirected
random graphs. We calculate a number of properties of these models, including particularly the probability of
connection between a given pair of vertices, and compare the results with real-world acyclic network data
finding that theory and measurements agree surprisingly well—far better than the often poor agreement of
other random graph models with their corresponding real-world networks.
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I. INTRODUCTION

A directed acyclic graph is a directed graph with no
cycles—closed paths across the graph that start and end at
the same vertex and follow edges only in their forward di-
rection. Directed acyclic graphs are a fundamental class of
networks that occur widely in natural and man-made set-
tings. The best-studied examples are citation networks, net-
works in which the vertices represent documents and the
directed edges represent citations between them. Citation
networks of learned papers have long been an object of study
in the information sciences [1-3] and more recently in phys-
ics [4,5], and citation networks of patents [6] and legal cases
[7,8] have also received some attention in the last few years.
Directed acyclic graphs occur in many other areas too. In
biology, phylogenetic networks representing gene transfer
are strictly acyclic and food webs are approximately so. In
computer science and engineering acyclic or approximately
acyclic graphs occur in data structures, software call graphs,
and feed-forward neural networks. In pure mathematics acy-
clic graphs are studied for their own sake [9-11] and as a
representation of partially ordered sets [12] and random
graph orders [13,14], while in statistics the widely used
Bayesian networks are an acyclic graph version of probabi-
listic graphical models [15-17].

Over the years, the study of networks has been substan-
tially illuminated by the development of random graph mod-
els. Such models include the original (Poisson) random
graph famously studied by Erdés and Rényi [18,19], the con-
figuration model of Molloy and Reed and others [20-23] and
its generalizations to directed, bipartite, and other network
types [24,25], the small-world model of Watts and Strogatz
[26], exponential random graphs [27,28], and others. These
models, combining simple definitions with complex but still
analytically accessible structures, have provided a window
on the expected behavior of large networks, as well as serv-
ing as the starting point for many other more sophisticated
models and calculations.

To the best of our knowledge, however, no corresponding
model has been studied for directed acyclic graphs—no
equivalent of the configuration model for networks such as
citation networks or food webs. In this paper, we describe
such a model and study its properties in detail, giving deri-
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vations of a variety of quantities of interest, extensive nu-
merical simulations, and comparisons with the behavior of
real-world acyclic graphs, with which, in some cases, the
model appears to be in surprisingly good agreement. A brief
report of some of the material in this paper has appeared
previously as Ref. [29].

II. ACYCLIC GRAPHS AND ORDERED GRAPHS

To correctly specify a random graph model for directed
acyclic graphs it is crucial first to understand the reason why
such graphs are acyclic in real life. In most practical ex-
amples the acyclic nature of the network arises because the
vertices are ordered. In citation networks and phylogenetic
networks, for example, the vertices are time ordered: aca-
demic papers have a date or time of publication; species have
a time of origination or speciation. In food webs vertices are
ordered according to tropic level. (Trophic level, however, is
often only an approximate concept and not precisely defined,
which is why some food webs are only approximately acy-
clic, containing a few violations of the no-loops condition.)
In software call graphs, the vertices, representing functions
or subroutines, are ordered according to the software abstrac-
tion layer they occupy, and so forth.

In each of these cases, it is the ordering of the vertices and
not their acyclic structure that is the definitive property of the
network. The acyclic structure is merely a corollary of the
ordering. In citation networks, for instance, papers can only
cite others that came before them in time, and this eliminates
closed cycles because all paths in the network must lead
backward in time and there are no forward paths available to
close the cycle. Similarly, in food webs, species of higher
trophic level prey on those of lower level. In software graphs
functions at higher levels of abstraction call those at lower
levels. The name “directed acyclic graph” is thus perhaps
slightly misleading, focusing our attention, as it does, on the
acyclic property rather than the more fundamental ordering.
A better name might be “directed ordered graphs,” but un-
fortunately the literature on this topic has long ago settled on
the older name and it seems unwise to try and change it now.

What is important for our purposes, however, is that a
sensible random graph model for these networks should mir-
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ror the features seen in the real world and incorporate
an underlying ordering of the vertices that then drives
the acyclic structure. Thus, the correct model is really a “ran-
dom ordered graph” and this is the approach we take in this
paper [30].

III. RANDOM DIRECTED ACYCLIC GRAPHS
WITH FIXED DEGREE SEQUENCES

In this paper we propose two related random graph mod-
els of directed acyclic graphs. The two models are roughly
analogous to the well known G(n,m) and G(n,p) versions of
the standard Poisson random graph [ 18], one fixing the num-
ber of edges in the network exactly and the other fixing only
the expected number. We begin by describing the “G(n,m)”
version, which we introduced previously in Ref. [29]. The
“G(n,p)” version, which is introduced in this paper, is de-
scribed in Sec. IV.

Our first model takes as its input an ordered degree se-
quence consisting of the in-degree k" and out-degree k" for
each vertex i=1...n, where n is the total number of vertices
in the network. The directed edges in the model are allowed
to run only from vertices with higher indices to vertices with
lower ones, and this constraint enforces the acyclic nature of
the network. Thus, we can have an edge running to vertex i
from vertex j only if i <<j.

Throughout this paper we describe our networks in the
language of time ordering: vertices are “earlier” or “later” in
the network, meaning they have lower or higher indices, and
the vertices with the lowest and highest indices are referred
to as “first” and “last.” The use of these terms is purely for
convenience and should not be taken as restricting the model
to networks in which the vertices are time ordered. The con-
cepts we introduce can be applied equally to networks such
as food webs and call graphs in which the ordering has noth-
ing to do with time.

A. Graphical degree sequences

A first important point to notice is that not all degree
sequences are realizable as ordered acyclic graphs of the type
described here. By analogy with similar issues in other
branches of graph theory, we will refer to realizable degree
sequences as graphical.

As with all directed graphs, if a degree sequence is to be
graphical the sum of the in-degrees of all vertices must equal
the sum of the out-degrees, since every edge that starts some-
where ends somewhere. Both sums are also individually
equal to the total number m of edges in the network:

n n
D= kM = m. (1)
i=1 i=1

For a directed acyclic graph, however, there are also addi-
tional conditions. For instance, the first (i=1) vertex in the
graph can never have any outgoing edges, since there are no
earlier vertices for such edges to attach to. Thus k{"'=0 al-
ways in a graphical degree sequence. Similarly, £,'=0. More
generally, we can derive a condition on the out-degree of
every vertex as follows.
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It is helpful to visualize in- and out-degrees as sets of
“stubs” of edges pointing in and out of each vertex in the
appropriate numbers. To create a complete network we need
to match the stubs in pairs, out with in, to make whole edges,
and a degree sequence is graphical only if all stubs can be
matched while respecting the ordering of the vertices.

The number of stubs outgoing from vertices below vertex
iis Ej-;llk;’”[ and each such stub must be matched with an
ingoing stub at a vertex below i, of which there are E};'lk}“.
The number of ingoing stubs below i that are left over after
we do this matching is

i-1 i-1
=2 k= 2 kS ()
j=1 j=1
This is the number of ingoing stubs below vertex i that are
available to attach to outgoing stubs at i and above. Note that
this number is determined entirely by the degree
sequence—it does not depend on any of the details of which
vertices are connected to which others.

Now consider vertex i itself. Its out-degree k' is the
number of its outgoing stubs and each of those stubs must be
matched with an ingoing one below i. That means that {™
cannot be greater than u; above—if it were, then there would
not be enough in-stubs available for i’s out-stubs to attach to
and the degree sequence would not be graphical. Thus, a
necessary condition for a degree sequence to be graphical is

i-1 i-1

k= Dk - DR 3)
j=1 j=1
For convenience, we define
i-1 i
NEDIT DI S )
j=1 j=1
so that Eq. (3) can be written as

\; = 0. (5)

This condition must hold for all i if the degree sequence is to
be graphical.

Our earlier condition that k{"'=0 trivially implies that X,
=0, and k,'=0 implies that \,=0 because

n—1 n
N=2 k= 2 KM =(m— k) -m=0, (6)
j=1 j=1

where we have made use of Eq. (1). Thus, we also have
A=\, =0. (7)

One might imagine that one could now make a similar
argument about the in-degrees of each vertex and derive a
second condition for graphical sequences of the form

2 -2 K =0. (8)
j=itl j=i

This is correct, but in fact it is just another form of the first
condition, Eq. (5), as the reader can easily verify by applying
Eq. (1).
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FIG. 1. The flux u; is equal to the number of edges from verti-
ces i and above that connect to vertices below i. The excess flux \;
is the number of edges that go around vertex i, connecting vertices
above to vertices below without passing through i. In this example
M;=6 and \;=5.

Equations (5) and (7) are a necessary condition for the
degree sequence to be graphical. It is straightforward to show
that they are also sufficient. The proof is a constructive one:
we build a network starting from the first vertex and working
up. If Eq. (5) holds then at each vertex i we know that the
number of free in-stubs at lower vertices is at least k{"', and
hence there are in-stubs available to attach all of our out-
stubs to. If we simply choose between the available stubs in
any way we like, create the appropriate edges, and move on
to the next vertex, then so long as there are no unused in-
stubs left when we get to the last vertex, which is guaranteed
by Eq. (7), we will have built a complete graph and hence
the sequence is graphical. Thus, Egs. (5) and (7) are a nec-
essary and sufficient condition for a graphical degree se-
quence.

The quantities w; and \; have a simple geometric interpre-
tation as shown in Fig. 1. If we make a cut in our graph
between vertices i and i—1, the quantity w; is the number of
edges that cross the cut or the number flowing from higher to
lower vertices. For this reason, we call w; the flux at vertex i.
(Technically the flux is a property not of the vertex but of the
gap between vertices i and i— 1, but we have to give it a label
so we choose to label it with the upper of the two vertices.)

The quantity \; is equal to the number of edges that flow
“around” vertex i, meaning the number that run from vertices
above i to vertices below. We call this quantity the excess
Sflux at vertex i. Using Eq. (2), we can show that the flux and
excess flux are related by

/.Liz)\i+k?m=)\i_] +k:2] (9)

In the limit of large network size, as we will shortly see, the
flux and excess flux are equal to one another to within a
fraction of order 1/n, and we will refer to both simply as
“flux” in this limit.

The flux is a quantity of interest in its own right in real-
world networks. Low values of flux indicate “bottlenecks” in
a network—lines across which few edges flow—and high
values indicate regions in which there are many edges. Fig-
ure 2, for example, shows the measured flux as a function of
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FIG. 2. (Color online) Flux w; for the network of citations be-
tween legal opinions of the U.S. Supreme Court plotted as a func-
tion of year of publication. The three dotted lines highlight dips in
the flux and correspond roughly to three widely acknowledged
shifts in the legal philosophy of the court: the start and end of the
“Lochner era,” during which the court took a strong antiregulatory
stance, and the start of the Warren court. (Note that the origin is
suppressed on the vertical axis.)

time for the network of citations between legal decisions of
the Supreme Court of the United States [8]. A number of dips
in the flux are visible in the figure (marked with dotted
lines). In legal terms, these dips correspond to temporal di-
visions between sets of opinions such that the earlier set is
little cited by the later set. It is a reasonable guess that these
divisions reflect changes in legal thought that made older
opinions obsolete, and indeed each of the three dips high-
lighted in the figure corresponds to an acknowledged shift in
Supreme Court jurisprudence, as indicated.

B. Definition of the model

The definition of our random graph model is now straight-
forward. In the language of stubs introduced above, a graph
on a graphical degree sequence is created by matching ingo-
ing and outgoing stubs in pairs to create m complete edges
while respecting the ordering of the vertices (meaning that
out-stubs can connect only to earlier in-stubs). Our model is
defined to be the ensemble of all such matchings in which
every matching appears with equal probability.

This definition is the exact equivalent for directed acyclic
graphs of the standard configuration model for undirected
graphs [22]. In the configuration model one matches undi-
rected stubs in pairs to create undirected edges and all match-
ings appear with equal probability in the ensemble. Note that
in our model, as in the configuration model, multiedges are
allowed. That is, the same pair of vertices can be connected
by more than one edge. (Unlike the configuration model,
there are no self-edges in an acyclic network, since this
would violate the no-cycles rule.) Multiedges occur in some
real-world acyclic networks, but not in others. In the model,
however, they typically constitute a small O(1/n) fraction of
all edges and so are negligible in the large system size limit.
At the same time, a model that admits them is far easier to
study analytically than a model that does not.
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Note also that the model includes random ordered trees—
which have been widely studied in the past—as a special
case. If every vertex in the network (other than the first) has
out-degree 1 then the network is necessarily a tree and the
ensemble is uniform over all ordered treelike matchings with
the given degrees.

Although the model is simple and intuitive, there are—
just as with the configuration model—some subtleties to its
definition. An important point to notice is that matchings of
stubs are not in one-to-one correspondence with network to-
pologies. Imagine our stubs to be labeled somehow, with
letters or numbers, so that each one is uniquely identifiable.
There will then, in general, be many different matchings that
correspond to each possible network topology. If we take a
matching and permute the labels of the out-stubs at a single
vertex i, we produce a new matching corresponding to the
same topology. The number of distinct such permutations is
k™', We can similarly permute the in-stubs at vertex i for a
total of k;"! permutations, and the number of permutations of
all stubs at all vertices is then ITA!" k"), This, in the sim-
plest case, is the number of matchings that correspond to
each topology. Since this number is a function solely of the
degree sequence, it is the same for all topologies, and hence
if all matchings occur with equal probability p, then all to-
pologies occur with equal probability pITk;" k™.

Unfortunately, there is a complication: if there are multi-
edges in the graph then the argument breaks down. Figure 3
shows why. If we identically permute the in-stubs at one end
of a multiedge and the out-stubs at the other end, then we do
not generate a new matching—we get back the same match-
ing we started with. We see this effect in the lower half of the
figure, where the four distinct permutations of stubs generate
only two distinct matchings. (The top half of the figure
shows another graph with the same degree sequence but no
multiedges and in this case each permutation generates a
unique matching.)

The net result is that our previous calculation overcounts
the number of matchings per topology by a factor of the
number of permutations of edges within multiedges. If there
are no multiedges, then our previous calculation is correct. If
there are multiedges then the number of matchings is re-
duced by a factor of II,-;A;;!, where A;; is an element of the
adjacency matrix, i.e., the number of edges between vertices
i and j. Since this factor depends on the number and multi-
plicity of the multiedges, it follows that in general all topolo-
gies are not sampled with exactly equal probability in our
model.

In practice, this is not a significant problem. The same
issue arises in the configuration model but does not reduce
the usefulness of that model. For the sake of precision, how-
ever, we note that although our model samples matchings
with equal probability, it samples topologies with unequal
probabilities that depend on the number and multiplicity of
multiedges.

C. Computer generation of networks

One attractive feature of the model proposed here is that it
is straightforward to generate networks drawn from the mod-
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FIG. 3. Top: a small directed acyclic network with four vertices
and three edges. The stubs at each vertex are labeled with letters
and the four versions of the graph show the matchings of the stubs
generated by permuting the stubs at each vertex. Each permutation
generates a different matching, so there are in this case four match-
ings corresponding to the same graph, as we would expect since the
product IT&" 1 k?"1=4 in this case. Bottom: a second graph with the
same degree sequence, but now with a multiedge between the two
center vertices. There are again four permutations of the stubs as
shown, but now they correspond to only two different matchings—
close inspection reveals that the first and fourth matchings are the
same, as are the second and third. Thus, in this case there are only
two matchings for this graph. If all matchings are generated with
equal probability, as in our model, then the top graph will be gen-
erated twice as often as the bottom one.

el’s ensemble on a computer. Previous methods for generat-
ing directed acyclic graphs have relied on Monte Carlo tech-
niques [16,17,31] but these methods, while versatile, are
quite slow. Our model, by contrast, allows us to generate
networks rapidly, in time O(m), where m again is the total
number of edges in the network. The algorithm, described
briefly in [29], is based on the scheme outlined in Sec. III A
for building a network. Starting with n vertices and an ap-
propriate number of stubs at each, we go through the vertices
in order from 1 to n. For each vertex we randomly join its
outgoing stubs to ingoing ones at lower vertices chosen uni-
formly from the set of all such in-stubs that are currently
unused. When all stubs have been matched in this fashion,
the network is complete and the algorithm ends.

It is straightforward to see that indeed this algorithm gen-
erates all matchings with equal probability. Consider the step
of the algorithm at which out-stubs from vertex i are
matched to suitable in-stubs. The number of out-stubs is k{™
and the number of in-stubs available to match them to is, by
definition, equal to the flux w;. Thus, the number of different
matchings of stubs on this ith step is N;=pu;!/(pi—k{™)!
=pu;!/\;!, where we have used Eq. (9) in the second equality,
and the algorithm chooses between these uniformly at ran-
dom so that each one occurs with equal probability 1/N;.
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FIG. 4. The probability that an edge (shown in bold) leaving
vertex i does not connect to vertex i+1 is given by N,/ iy

Repeating the process for all n vertices generates a unique
matching of the entire graph with probability
1 n
ML (10)

12Nl l2lu’l

This probability is clearly uniform over all possible match-
ings since it depends only on the degree distribution and not
on any details of the matching itself.

The algorithm can be implemented efficiently by main-
taining in an ordinary array a list of currently unclaimed
in-stubs from which we choose at random on every step. As
soon as it is chosen, each stub is erased from the list by
moving the list’s last item into its place. The operations for
each stub can be performed in time O(1), and hence the total
running time is simply proportional to the total number of
in-stubs, which is m.

D. Expected number of edges

One of the most fundamental properties of our model is
the expected number of directed edges between any two ver-
tices i and j. We will denote this quantity P;;. In the limit of
large network size P;; becomes small and is equal to the
probability that there will be an edge between i and j. We
assume that i<<j in the following calculations, so that the
edge in question always runs from j to i.

Consider Fig. 4 and consider one of the ingoing edges at
vertex i. That edge forms part of the flux u;,; immediately
above i and of that flux k{}] edges, chosen uniformly at ran-
dom, originate at vertex i+1, while the remaining wu;,,
—k=\;y, flow around i+1, forming the excess flux at i
+1. The probability that our particular edge is one of the
ones flowing around i+1, i.e., that it does not originate at
vertex i+ 1, is thus simply N,/ iy -

If our edge is to originate at vertex j, it must flow in this
way around every intervening vertex from i+1 all the way
up to j—1, and then finally it must originate at vertex j,
which it does with probability k;)”t/ ;. Multiplying the prob-
abilities together, we find that the total probability of this
particular edge originating at vertex j is

1—[ )\,_koutz_m . (11)

This is just for one of the ingoing edges at vertex i. There are
k;" such edges in all, so the total expected number of edges
from j to i is
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j-1
[IRY
_ zin out =i+l
Pyy= k= (12)

HMI

I=i+1

We will find it convenient to write this expression in the
form

kmkout

Pij _]_flj’ (13)

m
where

j-1
IT n
[=i+1

fij=m ; (14)

HM}

I=i+1

The quantity kmk"‘“/ m is the expected number of edges be-
tween i and j in an ordinary (not acyclic) directed random
graph with the same degree sequence, so f;; represents the
factor by which that expected number is modified in the
acyclic graph. Alternatively, f;; is m times the probability that
a single in-stub at vertex i is connected to a single out-stub at
vertex j. (The probability itself vanishes in the limit of large
graph size but with the inclusion of the factor of m we get a
quantity that tends to a nonzero limit, which will be useful
when we come to consider properties of the graph as n—0.)

One complication in the expression for f;; occurs if any
flux in the denominator is zero. The expression gives the
correct answer of zero for P;; if we adopt the convention that
0/0=1. However, it is usually better to analyze a graph di-
vided by a zero flux cut as two independent graphs, since no
edges cross the cut in such a network and the network forms
two separate components. A network with zero excess flux
does not necessarily form two separate components—the two
parts of the network can be joined by a single common ver-
tex at the top of one part and the bottom of the other—but
the two parts can be treated independently anyway, with the
shared vertex, if any, participating in both parts. Hence, in
the following, we assume that u;#0 and \;# 0 except for
i=1 and i=n.

Another useful expression for f;; can be derived by mul-
tlplylng both sides of Eq. (14) by f,r » with the condition that
i and i’ are both less than j and j'. Then

j-1 i'- j'-1 Jj-1
[IBY H VR I BV Y
I=i+1 I=i"+1 I=i+1 I=i'+1
fl]fl’ = J-r = j, j =fij’f‘i’j'
H 2 T | 7 II w
=l =i+l l=i'+1
(15)

Thus, we can freely swap indices on a product of two over-
lapping fs. In particular, if we set i’=1 and j'=n, we find
that
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_Julij

f 1n '
and f;; thus factors into a product of independent functions of
i and j. This result is of some practical use, since it implies
that in order to calculate f;; or P;; for any i and j we need
only the quantities f;, and f};, which are O(n) in number and
take O(n) time to calculate. Once these are known, we can
calculate any P;; in O(1) time, which is as fast as the corre-
sponding calculation for the configuration model, and far
faster than direct application of Eq. (12), which takes O(n)
time on average for each P;;.

Perhaps the simplest way to implement this idea in prac-
tice is to define the two “dimensionless” quantities

fij (16)

a,‘=&, j=f_1[’ (17)
fln fln
so that
fij=flnaibj~ (18)

Clearly a;=b,=1 and, substituting from Eq. (14) into Eq.
(17), we find the values for other i,; to be

i out
a=7—=11 (1 l—>, (192)
1=2 A
[IRY
=2
H /’l’l n—1 in
I=j+1 1
bj_ n—1 = o (1 T)’ (lgb)
I=j l

where we have made use of Eq. (9) [32]. We will use these
expressions in a number of calculations in the following sec-
tions.

E. Assortativity

As an example of the application of the calculations in the
previous section, consider vertex correlations or “assortativ-
ity” in acyclic networks [33]. Suppose a quantity x is defined
on all vertices i of a network. The network is said to be
assortative with respect to x if edges tend to connect vertices
with similar values of x, high with high and low with low.
Conversely, if edges connect dissimilar values, high with low
and vice versa, then the network is said to be disassortative.
Assortativity can be quantified by calculating a standard
Pearson correlation coefficient r over all pairs of values Xi»X;
on vertices i,j connected by an edge. Positive values of r
indicate assortative networks, and negative values disassor-
tative ones.

In a directed network, such as the acyclic networks con-
sidered here, more complex types of correlations are also
possible. For instance, one can consider two different quan-
tities, x and y, each defined on all vertices, and then ask

PHYSICAL REVIEW E 80, 046110 (2009)

about the correlations between pairs of values x;,y; on verti-
ces i,j connected by a directed edge from j to i. (The simpler
example above with only one quantity x can be considered as
the special case in which y=x.) Again one can calculate a
correlation coefficient that quantifies the level of assortativity
or disassortativity. The correlation coefficient is given explic-
itly in terms of the adjacency matrix by

1 1
r= {_2 Aijxiyj - lu'inlu’oul:| > (20)
OxOy| M j;
where
1 in 1 out
Min=_2 ki ;s lu’oul=_2 ki "yj, (21)
and
1 in_2 2
0§(= n_1 : ki X; = Mins (22a)
1 Ul
oy =2 K"y~ (22b)
J

Conventional random graph models such as the configu-
ration model show no assortativity with respect to any quan-
tity x, but random acyclic graphs can have nonzero assorta-
tivity. Consider Eq. (20) for the acyclic case and notice that
the only dependence on A;; is in the first term of the numera-
tor. All the other terms depend only on the degree sequence
of the network, and hence are constant for our acyclic graph
model over all members of the model ensemble. Averaging
over the ensemble and noting that the model average of A;; is

simply P;; from Eq. (13), we find that within our model

1 1
[_2 Pipxiy;— Mim%ut:|
m ij

r=
Ox0Oy i

1 fln i t

= _22 aibjk;nk;u XY= MinMout | » (23)
OxOy| M i<;j

where we have used Eq. (18). In general, this expression can

give nonzero values of . We will see some examples in Sec.

V for the particular case of assortativity with respect to ver-

tex degree [34-36], such as the case in which x;=k" and y ;
—kou
j

F. Large system-size limit

The developments so far are for a network of finite size
with a specified degree sequence. Like other random graph
models, however, random acyclic graphs become signifi-
cantly simpler in a number of ways in the limit of large graph
size. We examine that limit in this section.

Let the number of vertices in our network be n as previ-
ously. In the limit of large n we can no longer specify the
complete degree sequence, since there are an infinite number
of vertices, so, as with other random graphs, we specify in-
stead a degree distribution, which is a joint probability dis-
tribution over in- and out-degrees as a function of vertex
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order. We define a “time” variable r=i/n for the ith vertex,
which falls in the range 0<<t=1, then let p,(k™,k°") be the
probability that a vertex at time ¢ has in- and out-degrees k'™
and k™. Since vertices are uniformly distributed in time, this
distribution is related to the overall (joint) degree distribution
of the network by an integral:

1
P ) = f P k). (24)
0

Unfortunately the full distribution p,(k™,k°") is usually
impossible to measure for an observed network: measuring it
would require us to build a double histogram of k™ and k"
for many small intervals of ¢ and none of the real-world
networks we have examined are large enough to give accept-
able statistics for such a histogram. Luckily, however, it turns
out that many interesting characteristics of the network can
be calculated with a knowledge only of the moments of the
degree distribution, and in most cases only the first moment,
i.e., the mean degree.

The mean in- and out-degrees at time ¢ are given by

=20 2 Kp kA,

ki"=0 Kout_

EOUt(t) — E E koulpt(kin’kom) i (25)
ki"=0 ;out=

and the overall average degree ¢ of the network is

1 1
c= f K™(r)dr = f k" (1)dt. (26)

0 0

Both &™(r) and k°"() are easily measured in practice (at least
approximately) by performing running averages of the ob-
served degrees over suitably chosen time intervals.

For many of the calculations presented here we will use
the rescaled quantities

: k" (1 Kot
R LU @)
¢ ¢
which satisfy the normalization conditions
1 1
f K"(1)dt = f KY(r)dr = 1. (28)
0 0

The quantity «™(¢)dt is the fraction of all in-stubs that are
attached to vertices in the range ¢ to t+dt, and similarly for
k°(f)dt. The numbers of stubs are given by m«™(t)dt and
mk°"(t)dt, since m is the total number of stubs of each kind
in the whole network.

The flux below vertex i in the network is given by inte-
grating these quantities up to a given vertex thus,

Ki=m f [&"(t") = k*(e)]dt, (29)
0

where t=i/n as before. Note that, assuming the degree dis-
tribution remains constant as the network becomes large, the
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integral for given ¢ also remains constant, but m=nc grows
with network size. Thus, the flux becomes arbitrarily large as
n— . For our purposes it is better to use a quantity that
remains constant as n varies and so we define a rescaled flux

u(t) = B f ["(t") = (") ]dr". (30)
m 0

In the large system size limit, there is no difference between
the flux u and the excess flux \: the two differ only by the
number of stubs at a single vertex, which is a vanishing
fraction of m in the limit of large network size, and hence \;
also varies as m and the rescaled excess flux A(f)=N\;/m is
given by

A(t):J [k"(¢") — k(") ]dt". (31)
0

Physically u(f) and A(z) are both equal to the fraction of
edges that run from vertices after ¢ to vertices before.
Applying these definitions, we can now calculate a variety
of quantities in the n— o0 limit. To calculate the probability
of connection between two vertices, we start with Eq. (19a):

~ i k;mt)_ i < k;}ul)
ai—H<1+ N —exp[Eln 1+ ] (32)

1=2 1 =2 1

Observing, as above, that \; goes as m in the large system
size limit while kj"' remains constant and keeping terms to
leading order, this becomes

ai:exp[E k;"“], (33)

and in the limit of large n, the sum becomes an integral:

B t K()Lll(l,f)
a(t) =exp f —dr’ |. (34)
| Jo N@)
Similarly, defining u=j/n, Eq. (19b) becomes
[ 1 ing,
b(u)zexp_fu ';((:,))du'], (35)

and substituting both into Eq. (18) we get

J(t,u) = (0, Da(t)b(u), (36)

where f;;=f(i/n,j/n). Physically, f(t,u) is m times the prob-
ability that an in-stub at time ¢ is connected to an out-stub at
time u. The normalizing constant f(0, 1) can be calculated by
noting that every in-stub must be connected to some out-
stub, which means that

1
f Ft,u) k" (u)du = 1. (37)

Substituting for f(z,u) from Eq. (36) and setting =0 then
gives
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1 -1
f(0,1)= |:J b(u)K(’“t(u)du] , (38)
0

where we have made use of a(0)=1. If we instead normalize
by integrating over ¢t we get the alternative form

1 -1
f(o,l){ f a(t)Km(t)dt] , (39)
0

which gives the same answer but may be more convenient in
some cases depending on the forms of «™ and k°'.

Armed with a value for f(z,u) we can now calculate the
expected number of edges between two vertices in the net-
work from Eq. (13):

inj out

P;= —mLf(l/n,J/n) (40)

Alternatively, we can average this expression over the distri-
butions of k™ and k" to get the average number of edges
between a vertex at ¢ and another at u:

]?n(t) ];out(u)

P(t) = == —f(t.u) = ifen(z)xwu) f(tu). (41)

Since f(t,u) is independent of n for given «(¢) and x°“‘(u),
P;; [and P(t,u)] goes as 1/n in a sparse graph as graph size
becomes large and hence vanishes in the limit. This allows us
to interpret P;; as a probability of connection between verti-
ces in the n— o0 limit—the expected number of edges and
the probability of connection are the same when both be-
come small.

We also note in passing the following useful relation be-
tween \(¢) and f(r,u). From Eq. (12) we have

km kout
Piyy=—" (42)
Mi

so that f;_; ;=m/ ;. Setting r=i/n as before and u,;/m=X\(r),
this implies that

1
NOE m (43)
G. Examples

To illustrate the application of these results let us look at
some concrete examples. Consider a network with average

degrees k™(1)=2c(1—t) and k°“(r)=2ct, where ¢ is now a
free parameter controlling the overall mean degree. Then
) =2(1-1), K(u)=2u, (44)

and we find that

1
ft,u) = 20 —0u (45)

and
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B 2¢(1 -1)2cu 2
Pltu) = 2m(l-tu  n’ (46)

where we have used m=nc in the second equality.

Thus, the expected number of edges between every pair of
vertices in this case is the same, and indeed one could exploit
this fact to create a network with the degree sequence above
by taking an initially empty graph and placing a directed
edge between each vertex pair with uniform probability
2c/n, oriented to point from the “later” vertex to the “ear-
lier” one. Such a model has been studied previously as a
model of food webs, in which context it is known as the
cascade model [37)]. The cascade model produces networks
with a given degree sequence uniformly at random and thus
is approximately equivalent to an acyclic random graph with
the same degree sequence, as described in this paper. The
equivalence is only approximate: the cascade model has a
Bernoulli distribution of edges between any two vertices
while our model has a Poisson distribution. This difference,
however, vanishes in the limit of large graph size, where the
edge probability becomes small, and thus in this limit the
two models are the same.

More generally, consider a model where a Poisson distrib-
uted number of directed edges is placed between all pairs of
vertices i,j with i <j. If the mean of the Poisson distribution
for each vertex pair can be written as a product of a quantity
r; that depends on i but not on j and a quantity s; that de-
pends on j but not on i, then the model produces acyclic
random graphs conditioned on the degree sequence. To prove
this we write the probability P of generating a particular
graph thus

H e

P= H e Si r/_r.IL < H Skm kom. (47)

i<j A it H Az]' i
i<j
The factor II; ;™" is a constant for all graphs and the factor

m out

ILs; ki rk’ is constant for a given degree sequence. Thus, the
only Vanation in the probability P for graphs of given degree
sequence comes from the factor II;;A;;!. But this is the same
factor by which the probability of such graphs varies in the
random acyclic graph model—see Sec. III B—and thus, for a
given degree sequence, the model above produces graphs
with the same probabilities as the random acyclic graph and
the two models have identical ensembles. The cascade model
is a particularly simple instance of this situation in which r;
and s; are both constant.

As another example, we consider networks with power-
law degree distributions, which have received a lot of atten-
tion in the recent networks literature. In particular, for rea-
sons that will shortly become clear, we consider networks
generated by linear preferential attachment processes [38],
which naturally generate directed acyclic graphs and have
long been used as models of citation networks [39]. We con-
sider the general model in which vertices added continually
to a growing network make ¢ directed connections each to
previously existing vertices chosen at random in proportion
to the current in-degrees of those vertices plus a constant r.
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This process produces networks with overall in-degree dis-
tributions having a power-law tail p(k)~k™® where a=2
+r/c [39,40]. In the notation used in this paper the average
in-degree as a function of time is given by [40]

K1) = (@=2) (VD - 1), (48)

and «*"'(u)=1.

Let us consider a random directed acyclic graph built on
degree sequences generated by the linear preferential attach-
ment model and let us calculate the probability of connection
between vertices. Feeding the expressions above for «"(7)
and «°"'(u) into our earlier formulas, we find that

1
(a _ 1)(1 _ tl/(a—l))u(a—Z)/(a—l)

ftu) = (49)

and
P(t,u)=cla— 2)1"1/(“‘1)]'_(“‘2)/(“‘1), (50)

where again t=i/n and u=j/n. Remarkably, this is precisely
the average probability of an edge between vertices in the
preferential attachment model itself [41]. Indeed, as we will
shortly show, the linear preferential attachment ensemble and
the ensemble of the random acyclic graph with the same
degree sequence are actually identical, because linear prefer-
ential attachment, conditioned on the degree sequence, pro-
duces matchings uniformly at random, which is precisely the
condition for the random acyclic graph. Thus, not only is
P(t,u) the same for the two models, but all properties of the
models are identical and one can properly say that the linear
preferential attachment model is a special case of the random
directed acyclic graph.

This is an important point. It is often claimed that net-
works produced by the linear preferential attachment process
are, in some sense, not really random, being nonuniform in
their ensemble properties because they are grown according
to a nonequilibrium growth process. In fact, however, this is
not the case. Once the acyclic nature of the networks is taken
into account, the ensemble of the linear preferential attach-
ment model is perfectly uniform for a given degree se-
quence.

To prove this we compute the probability of a particular
matching being produced by the linear preferential attach-
ment model as a function of in-degree sequence. An outgo-
ing edge at a newly added vertex j in the growing preferen-
tial attachment network attaches to a previous vertex i with
probability proportional to i’s current in-degree k;" plus the
constant r. The correctly normalized probability of attach-
ment is

K"+ r k' +r

i1 Tm+ (- r’

> (k" +r)
i=1

(51)

where m=2,~k§“ is the current number of edges in the net-
work. The probability of the entire matching is given by the
product of this expression over all edges. Let us consider the
numerator and denominator of the product separately, start-
ing with the numerator.
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The current in-degree of vertex i is O when the first edge
attaches to it, 1 when the second edge attaches, and so forth.
Hence, the factors for vertex i in the numerator are

(k™ +r)
L(r) ~

where k}" now represents the final in-degree of i at the end of
the growth process and I'(x) is the standard gamma function.
Taking the product over all vertices, the complete numerator
is Hf’;llr(k;n+ r)/I'(r). (There is no term for the last vertex
since it necessarily has no ingoing edges.)

For the denominator, we note that the number of edges m
in the network increases by one for each edge added and
takes the value (j—2)c for the first edge added with vertex j
and (j—1)c—1 for the last. Thus, the factors in the denomi-
nator corresponding to the edges added with vertex j give

[G=2)c+(G=Dr]...[G=1Dc=1+(G-1)r]
TG = 1D(c+7r)]

r(1+7) . (k=147 = (52)

TG - D+ —c] 53)
and the complete denominator is
ﬁ T[G-D(c+n] 7y Tlilc+7r)] s

T[G-D(c+r-c] 1y Dlilc+r—-cl’

j=2
Dividing numerator by denominator, the complete prob-
ability for the matching is then

n—1

p=11

i=1

l"(ki-n +r)Ii(c+7)-c]
I'(r) I'li(c+1)]

(55)

Since this probability depends only on the degree sequence
and not on any details of which vertices attach to which
others, it follows that the preferential attachment process
generates all matchings with a given degree sequence with
the same probability, and hence that the set of networks with
that degree sequence constitutes a random directed acyclic
graph of the type considered in this paper.

Note that a calculation similar to the one above can be
performed for a model in which out-degree is not the same
for every vertex, but varies from one vertex to another, or a
network in which the parameter r varies between vertices.
The probability of a particular matching for such a model is
still a function only of the degrees and other parameters and
not of the pattern of connections in the network and hence
the network is still a random graph of the type considered
here.

IV. RANDOM DIRECTED ACYCLIC GRAPHS
WITH INDEPENDENT EDGE PROBABILITIES

In this section we define the second of our two random
graph models for acyclic graphs. In this model rather than
fixing the degree of each vertex we fix only the expected
degree. As discussed in the introduction the model is in some
ways analogous to the G(n,p) model of Erdds and Rényi
[18] for ordinary (Poisson) random graphs, while the previ-
ous model is the equivalent of G(n,m).
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We have seen that it is possible in our previous model to
calculate the probability of an edge between any pair of ver-
tices. However, in that model edges are not independent be-
cause the presence of one edge connecting to a given vertex
i reduces the number of stubs available for other edges and
hence reduces the probability of edges from other vertices. In
the limit of large network size, the probabilities for edges to
and from intervals df and du become independent, but even
in this limit edges that share the same exact vertex, either as
source or target, remain correlated.

The same phenomenon is also seen in other random graph
models, such as the configuration model, in which degrees
are also fixed and the presence of one edge to a vertex re-
duces the probability of others. In that case, researchers have
found it useful to study a slightly different model in which
edges are placed with the same probability as in the configu-
ration model, but independently [42—44]. The same strategy
turns out also to work well in the case of acyclic graphs. The
resulting model is described in this section.

A. Definition of the model

Our second model is defined as follows: starting with an
empty graph of n vertices we generate for each pair of ver-
tices i,j, with i <j, a Poisson distributed number with mean
P;; and place that number of edges between i and j, pointing
from j to i. The values of P;; are typically calculated from a
desired degree sequence using Eq. (13), and the resulting
network trivially has the same expected number of edges
between every vertex pair as the network generated by our
first model with the same degree sequence, but the edges are
now, by construction, independent.

Since the number of edges between every vertex pair is
Poisson distributed, so also is the total number of edges m.
Thus, an equivalent way to create networks drawn from this
model is to generate a Poisson distributed random number m
with mean equal to the desired expected number of edges,
then distribute those edges at random over the graph in pro-
portion to P;;. This second method for generating networks is
a more efficient one for numerical work but the first is more
convenient for analytic treatment of the model.

The principal disadvantage of this model is that it does
not allow us to fix the exact degrees of each vertex. Instead

we can only fix the expected degrees k" and k™. The ex-
pected in-degree, for instance, is given by 27, | P;;, which is
by definition equal to the value of k;" used to calculate P;; in
the first place. In other words, the network has expected de-
grees equal to the chosen degree sequence, but the actual
degrees may be different.

In fact, since the numbers of edges are Poisson indepen-
dent variables, the in-degree will also be Poisson distributed
with mean k" (and similarly for the out-degree). Note, how-
ever, that this does not mean that the overall distribution of
the degrees at any time has to be Poisson, since the distribu-
tion from which the means themselves are drawn can be
anything we like and the overall distribution of degrees is a
convolution of this distribution and the Poisson distribution.

The expected degrees also need not be integers, so this
model allows a slight generalization of the previous one in
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that the values of k" and k™ we use to calculate P, ; need not
be integers. Indeed we could generalize the model consider-
ably further, since in principle we can choose the values of
the P;; to be anything we want, including values that cannot
be generated from Eq. (13) by any choice of degrees. Any
values, for example, that do not take the product form of Eq.
(13) fall in this category. In this paper, however, we will
mostly be concerned with choices of P;; that correspond to
an underlying choice of expected degrees.

B. Computer generation of networks

It is less straightforward to numerically generate networks
drawn from the ensemble of our second model than of our
first. The basic approach is as outlined above: given the ex-
pected degrees, we calculate the expected number of edges
by summing m=23_ k" and then generate a Poisson distrib-
uted number with this mean, which will be the actual number
of edges m.

To place these m edges with the appropriate probabilities
we need to be able to randomly generate vertex pairs with
probabilities proportional to P;;. This can conveniently be
achieved by making use of the product form (13) of P;;. We
draw a value for i from the marginal probability distribution,
which goes as 27 +1Pi;=k;", using a standard transformation
method, which takes O(log n) time. Then we draw a value
for j between i+1 and n in proportion to k;’“tb > again using
the transformation method. Then we place an edge between i
and j and repeat for the next edge. When all m edges have
been placed the graph is complete. The whole process takes
O(n) time for setup and O(m log n) for selection and placing
of edges, or O(n+m log n) time in total, which is O(n log n)
on a graph with fixed degree distribution so that mxn.

V. COMPARISON WITH EMPIRICAL DATA

Our expressions for edge probabilities allow us to make a
comparison between our model networks and their counter-
parts in the real world. We focus on citation networks, which
are the largest and best documented examples of acyclic net-
works.

The simplest comparison we could make would be a di-
rect comparison of edge probabilities P;;. However, the value
of P;; is strongly influenced by the degrees of vertices—the
initial factor of ki»“k}’“l in Eq. (13)—which makes comparison
plots noisy and difficult to interpret by eye. A cleaner com-
parison is of the stub probability f;;, Eq. (14), which is m
times the probability that a stub at vertex i is connected to a
stub at vertex j.

We can make an estimate of f;; for an observed network
by taking a window of vertices around i and another around
J, counting the number of edges between vertices in the two
windows, and then dividing in turn by the number of in-stubs
in the first window and out-stubs in the second and multiply-
ing by m [45]. If the windows are large enough to provide
good statistics but small enough to span only a relatively
narrow range of i and j then one can get good estimates of
the mean stub probability this way.

In Fig. 5 we show the results of such measurements for
two citation networks. The first is a network of citations
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FIG. 5. (Color online) Comparison of empirical measurements
(jagged red line) and analytic predictions (smooth black line) of f;;
for the two citation networks described in the text: preprints on
high-energy physics (top) and cases of the United States Supreme
Court (bottom). The left panel in each case shows f;; for citations
from times ¢ to time 0.1 (indicated by dashed line). The right panel
shows f;; for citations to times ¢ from time 0.9. Empirical measure-
ments were averaged over windows of size 300 vertices.

between academic papers in the area of theoretical high-
energy physics, which we studied previously in Ref. [29].
This data set comprises 27 221 papers posted in the “hep-th”
section of the Physics e-print Archive at arXiv.org between
January 1992 and February 2003. The data set was compiled
by the organizers of the KDD Cup challenge, a data analysis
competition run as part of the annual ACM SIGKDD confer-
ence, and incorporates citations extracted from data held in
the SPIRES database at the Stanford Linear Accelerator Cen-
ter.

The second data set is a network of citations between
26 084 legal decisions handed down by the United States
Supreme Court, from the time of the court’s inception in
1789 until 2006, as compiled by Leicht et al. [8]. From these
data we extracted values for f;; as described and also calcu-
lated the full in- and out-degree sequences and used them to
evaluate the analytic expression (14) for the same quantity.

Figure 5 shows separately the value of f;; for fixed i and
varying j (left panels) and for fixed j and varying i (right
panels) for the two networks. As we can see, in all cases the
analytic solution for the random graph model agrees surpris-
ingly well with the measurements. The agreement is not
perfect—there are visible differences between measurement
and theory—but the level of agreement is far better than for
most other random graph models. Certainly the predictions
of the configuration model rarely agree this well with the
behavior of real-world networks. Thus, it appears that, in this
case at least, the twin inputs of degree sequence and vertex
order are enough to capture a large part of the variation in
edge placement in the true citation networks.

There are other aspects of network structure, however,
that are not so well captured by our model. An example is
correlations between the degrees of adjacent vertices or de-
gree assortativity in the nomenclature of Sec. III E. We con-
sider two kinds of possible degree correlations over directed
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edges: correlations between in- and out-degrees at the start
and end of directed edges and correlations between in-
degrees at either end. In the language of paper citations, the
former is a measure of the extent to which highly cited pa-
pers are cited more often by prolific citers. The latter is a
measure of the extent to which highly cited papers are more
likely to be cited by other highly cited papers. We have com-
puted correlation coefficients of the form (20) for both net-
works described above for both of these types of correla-
tions, as well as calculating expected values for random
graphs with the same degree sequences from Eq. (20).

The results show mixed levels of agreement. For the high-
energy physics citation network the measured and predicted
values of the correlation coefficients are in all cases very
small, indeed negligible for most practical purposes, so that,
although the empirical and theoretical values do not agree
closely, one could claim that there is qualitative agreement
between them in that there is essentially no correlation
present. [For in-degree/out-degree correlations we find r
=0.002 (empirical) and —0.003 (theory) and for in-degree/in-
degree we find r=0.040 (empirical) and 0.016 (theory).]

For the Supreme Court, on the other hand, the correlations
are more substantial and moreover display significant dispar-
ity between observed and predicted values. For in-degree/
out-degree correlations we find r=0.124 (empirical) and
0.007 (theory), and for in-degree/in-degree we find r
=0.184 (empirical) and 0.022 (theory). This appears to indi-
cate the presence of phenomena in the real network that are
not captured in the model and illustrates one of the main
motivations for the creation of random graph models, which
is to provide a null model that can tell us when an observed
property of a network differs significantly from what we
would expect on the basis of chance, and hence draw our
attention to nontrivial network features.

VI. CONCLUSIONS

In this paper we have introduced two random graph mod-
els for directed acyclic graphs, which are analogous to the
G(n,m) and G(n,p) models of traditional random graph
theory. We have defined and calculated a number of funda-
mental theoretical quantities for these models including de-
gree sequences, degree distributions, edge and stub prob-
abilities, and degree correlations. We have also defined the
appropriate infinite-size limit of our models and shown that a
number of the central quantities of the theory simplify in this
limit. We have compared the basic predictions of the models
with two example real-world networks, a network of cita-
tions between physics papers and another of legal decisions,
finding surprisingly good agreement between measurement
and theory for some properties, but significant divergence in
others.

Starting with the formalism developed in this paper it
should be possible to compute many other standard network
quantities for random directed acyclic graphs. We believe
that the models developed here have the potential to shed a
significant amount of light on the effects of vertex ordering,
an important defining property in many real-world networks.
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